
Synopsis of “Feynman’s Lost Lecture and Beyond” 

Part 1: Introduction and Historical Context 
This video is relatively short and self-explanatory. 

Part 2: Definitions 
This video reviews some of the basic geometry of ellipses, and then provides definitions of terms 
and variables used in subsequent video presentations.  These definitions are summarized in the 
following diagram: 

Note:  In this synopsis, a vector will be represented in bold blue (eg, V), and a vector’s magnitude 
will be represented in script light blue (eg, V).  In the video presentations, a more standard form 
of vector notation is used. 

Part 3: Proof of Kepler’s Second Law 
This video offers my representation of Feynman’s representation of Newton’s proof of Kepler’s 
second law.  Using a series of triangles to approximate the area swept out by a planet as it orbits 
the sun, and then shrinking the central angle of each triangle down towards zero, one can readily 
show that, in modern notation, 



 

In this manner, Newton’s introduction of an intuitive concept of limits and infinitesimals leads 
naturally to the concept of a derivative.  Because the derivative here is a constant and is easy to 
visualize geometrically, it sneaks in unannounced so to speak, without the need for any formal 
definition, just as the conservation of angular momentum, for a planet orbiting the sun, sneaks in 
unannounced. 

Part 4: The Special Case of Circular Orbits 
This video examines the simple case of a hypothetical circular orbit, the consideration of which 
leads to some key insights that will be very helpful when exploring the case of non-circular 
orbits. 

Parts 5.1 to 5.3:  An Ellipse? Etc 
These videos comprise my representation of Feynman’s development of what I call the dV/d-
theta circle.  Because the dV/d-theta circle is so essential to this novel approach to the central 
force problem, I provide a fairly detailed synopsis here. 

Consider a planet traveling from point A to point B along its arbitrary orbital path: 
 



 

 

The fact that dV/d-theta is constant is significant. If we line up “all of the dV’s” in order, tail to 
head, for the entire orbit, in vector space, maintaining their same orientation relative to the same 
reference direction as in position space, they form a circle (ie, a regular polygon with an infinite 
number of sides)—the dV/d-theta circle.The radius of the dV/d-theta circle is GM/h, which has 
units of velocity. 

For a circular orbit, V = GM/h.  For a non-circular orbit, it can be shown that the maximum 
velocity, Vmax  = (1 + e)GM/h, where e, as I prove in a subsequent video, is the eccentricity of the 
orbit and, as one would expect, has a magnitude such that 1< e < 2.  Moreover, proper placement 
of Vmax in the dV/d-theta circle of vector space requires that it lie along the vertical diameter of 
the circle with its head touching the top of the circle.  To find Vtheta associated with a planet at any 
angle of azimuth, one draws a vector with its tail on the tail of  Vmax  and its head on the  
circle at an arc length of theta radians from the head of  Vmax.   



 

Thus, the dV/d-theta circle provides a simple means of “integrating” dV’s from 0 to theta, such 
that their sum produces the resultant vector delta V .  Once again, a little bit of calculus sneaks 
in unannounced because of the visually intuitive nature of the integral.  If everything were 
drawn to scale, one could directly measure the magnitude and the angle, alpha, of the vector.  
Feynman instead goes on to construct his geometric proof of the law of ellipses, and this is 
where I leave him to go in a different direction.



 
Part 5.4 and 5.5:  An Ellipse? Etc 
In these video presentations, I invent some initial conditions; namely, Dp, the distance of the 
planet from the sun at perihelion, and Vmax, its velocity at that point in time.  Using the dV/d-theta 
circle, 

it is easy to show that:  
 



I go on to show that IF the orbit is an ellipse, then it follows that e, as defined above with 
reference to the dV/d-theta circle, must in fact be the eccentricity of that ellipse.  Furthermore, IF 
the orbit is an ellipse, knowing Dp and e allows us to find a, the semi-major axis of that ellipse: 

Now, I go on to prove that the orbital path is in fact an ellipse. Take the velocity of the planet, 
Vtheta, at any arbitrary point in its orbit, and consider the following diagram that appears in the 
Part 5.5 video (note the different vector notation): 

 

Using trigonometry and trigonometric identities, I go on to show that for the planet at that point 
with this velocity vector: 



Then using formulas derived earlier, it follows that: 

and furthermore that: 

This latter derivation is the standard form for the equation of an ellipse in polar coordinates with 
the origin at one focus. 

Part 6: Proof of Kepler’s Third Law 
Using several of the formulas derived earlier, it is a simple matter to prove Kepler’s third law: 



Part 7: Final Exam 
You are given the speed and distance from the sun of planet Q, as well as the angle phi defined 
by its displacement and velocity vectors, at a particular moment in time.  However, you are not 
given its angle of azimuth relative to the major axis.   

 

Can you find the equation for its orbit? 


